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Presentation overview
 Background

 Highlights from Test Programmes

- Oxyfuel UK DTI Project 

- BOM-COM RFCS

- EcoScrub RFCS project

- Fuel project (RWE npower project)

- Oxygen injection project with BOC

 Summary
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Background: What is oxyfuel?

> Flue gas is recycled and air is replaced by oxygen

> The gas inside the boiler becomes almost nitrogen-free and CO2 is 
then removed.
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Desktop 
Studies

Overview of CTF programme

Safety Fuel Issues

Process 
Development

Optimisation

CTF Studies
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Desktop 
Studies

Overview of CTF programme

 Regulation issue - LCPD limits for 
oxyfuel

 Pre-investment issues (upfront 
parameters)

 Required footprint for retrofit (e.g. 
air separation unit)

Safety Fuel Issues

Process 
Development

Optimisation Air leakage

 Optimum recycle ratio

 Air heater design

 Optimisation of mixing strategy (where to add 
O2 - PA/SA/TA etc.)

 Gas recirculation

 Oil burner operation on oxyfuel

 Flexibility - start-up/shutdown limited by air 
separation unit so cold-start on air

CTF Studies
 Selection of coals (optimise purchasing)

 Use of biomass

 Furnace slagging

 Furnace Corrosion

 Fouling

 NOX (chemistry not well understood)

 Heavy metal recycling and ash composition

 Safety handling and storage of oxygen and 
CO2

 Flame detection issues (higher moisture and 
CO2 may affect UV and IR absorption)

 Safety of mixing oxygen/CO2

 Flame stability

 Safe switch-over the oxyfuel combustion

 Safety of staff with CO2 /flue gas leaks etc.

 Purging for safety  Burner design

 Carbon burnout

 Heat transfer (radiative/convective properties)
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CTF oxyfuel conversion
> Two-stage conversion of the CTF

– Phase 1: Stored CO2 injection

– Phase 2: Flue gas recirculation

> Why a two-phase strategy?

– Rapid start-up with less (though significant) engineering – air ingress

– Flexibility

– Identify show stoppers or new issues at an early stage

– Second stage to quantify full impact of issues such as NOX, slagging, 
corrosion and trace elements that cannot be fully studied by CO2 injection 
alone
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CTF oxyfuel conversion
> Two-stage conversion of the CTF

– Phase 1: Stored CO2 injection

– Phase 2: Flue gas recirculation – Cancelled following strategic review

> Why a two-phase strategy?

– Rapid start-up with less (though significant) engineering – air ingress

– Flexibility

– Identify show stoppers or new issues at an early stage

– Second stage to quantify full impact of issues such as NOX, slagging, 
corrosion and trace elements that cannot be fully studied by CO2 injection 
alone – Cancelled following strategic review
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Rig modifications

> CO2 injection

– Storage tanks for O2 and CO2 with mixing and safety systems

– Modified system of blowers and SA/TA heaters

– Steam boiler

– Doping gasses (SOx, NOx)

– Controls and logic interface with existing CTF system
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Boiler Steam
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RWEnpower’s OxyFuel facility

O2, CO2 and N2
Storage Vessels



RWE npower PAGE 12

RWEnpower’s OxyFuel facility

Evaporators
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RWEnpower’s OxyFuel facility

Gas mixers
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RWEnpower’s OxyFuel facility

Gas Heaters
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RWEnpower’s OxyFuel facility

Burner
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Schematic of CTF Test Furnace
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BOFCOM
Heat Transfer under OxyFuel Firing Conditions
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Driver for Studying Heat Transfer Distributions – Radiative and Convective

• Radiation heat transfer is driven by gas
temperature (T4) while convective heat transfer by
gas temperature and velocity.

• To operate as “air equivalent” the balance
between radiative and convective heat transfer
has to be found

• The recycled flue gas can be either wet or dry
dependent on where the recycled flue gas taken
from in the system.

• The recycled flue gas could be take wet from the
outlet of the ESP (where the moisture content
would be circa 18% by volume) or after an FGD
system (where the moisture content would be
circa 8% by volume).
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Radiative HT - South African coal – Dry Recycle

Furnace Heat Flux Measurements
South African coal, Oxyfuel (3% O2)
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IFRF Burner - RR 66%, 38% Inlet O2
Hot intense flame
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IFRF Burner – RR 77%; 28% Inlet O2
Cool Flame
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Normalised Convective & Radiative Heat Flux
Russian Coal - Dry Recycle

Dry Oxyfuel Operation Normalised to Air Operation
Peak Radiation Flux, Convective heat transfer and calculated flame temperature

Russian coal
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Measured Convective Heat 
Transfer Coefficient indicates 74% 
Recycle is "Air-equivalent"

Calculated dry oxyfuel adiabatic 
flame temperatures are 
equivalent to air at 69% recycle

Measured Peak Radiative 
data indicates 74% 
Recycle is "Air-
equivalent"

New Build Retrofit Avoid
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65% rr, Total flow 567.69kg/h 
Sec 412kg/h@38.0% O2
(time: 14:36)

70% rr, Total flow 656.99kg/h 
Sec 501kg/h@29.0% O2
(time: 13:14)

68% rr, Total flow 615.71kg/h 
Sec 457kg/h@31.6% 
(time: 13:44)

65% rr, Total flow 554.74kg/h 
Sec 400kg/h@35.8% O2
(time: 14:19)

75% rr, Total flow 806.57kg/h 
Sec 650kg/h@25.4% O2
(time: 12:29)

72% rr, Total flow 722.64kg/h 
Sec 567kg/h@28.9%O2
(time: 12:54)

70% rr, Total flow 670.91kg/h Sec 
516kg/h@31.3%O2
(time: 13:27)

68% rr, Total flow 624.70kg/h 
Sec 470kg/h@33.9%O2
(time: 14:04)

72% rr, Total flow 709.04kg/h 
Sec 552kg/h@26.5%O2
(time: 12:41)

Oxycoal - Flame Stability 
Flame Animations (South African Coal) 

• Images for different simulated recycle rates under low O2 settings

• Images for different simulated recycle rates under high O2 settings
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Note: Images and temperature profiles shown here are 
averaged for 10 instantaneous readings over about 2 minutes.

Flame Images

75% RR: Sec.f 600kg/h@22.1%
(time: 13:41, 29-10)  72% RR: Sec.f 513kg/h@25.5%

(time: 14:18, 29-10)

65% RR: Sec.f 368kg/h@34.8%
(time: 15:18, 29-10)

68%RR: Sec.f 
422kg/h@30.5%
(time: 15:05, 29-10)

62% RR: Sec.f 322kg/h@39.4%
(time: 12:32, 30-10)

• Temperature profiles for different simulated recycle rates under 
lower O2 settings
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Conclusions (Dry recycle data)

> Air operation radiative heat flux found to be equivalent to 72 – 75%
recycle ratio (due to different radiative properties of carbon dioxide
compared to nitrogen)

> Radiative heat flux peak shifts downstream as recycle rate increases

> Convective Heat Transfer equivalent to air at 74% recycle ratio (main
factors here are temperature and mass flow)

> Working range exists (there is a recycle ratio for which both radiative
and convective transfer can be reasonable matched between air and
oxyfuel operation. It is therefore possible to design a boiler for efficient
operation in both oxyfuel and air conditions).

> Flame stability decreases with increasing recycle ratio
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BOFCOM
Deposition Studies under OxyFuel Firing Conditions
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Combustion Test Facility 

RWE have carried out a series of deposition runs on their pilot scale 
combustion test facility
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Bofcom Deposition Data – Russian Coal 2
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Deposition efficiency and Deposit Type
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Impact = f (deposition rate and Deposit type)
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As the recycle rate is reduced the ash become more fused –

stronger deposits and the deposition efficiency increases.

Temperature is a direction function of recycle rate

No apparent chemical differences.



RWE npower PAGE 31

Caption competition!
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Caption competition!
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Caption competition!
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BOC / RWE
Oxygen injection
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Oxyfuel with Centre Lance Oxygen injection 

> Injection of pure oxygen
centrally through the burner’s
core air tube instead of through
the secondary air register.

> Strong impact on the flame

> Potential reduction in NOx

O2 injection: 39kg/h O2 injection: 52kg/h
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RWE
Fuel Flexibility
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Fuel flexibility – From Lignite to anthracite?
 Radiative Heat Flux

Oxyfuel (3% O2), dry
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Fuel Flexibility
> What has been demonstrated is that:

– Using oxy-fuel combustion technology, a wider range of coals
can be fired in a swirl burner configuration for application in wall
fired boilers than is conventional with standard air firing.

– This offers potential for greater fuel type flexibility, wider options
in fuel diet and consequential fuels costs than would be normal
in a conventional only air fired wall fired boiler.

> This scoping study has demonstrated that flame ignition, stability
and luminosity for low volatile fuel can be improved under oxy-fuel
firing conditions compared to air and deserves a more systematic
study.
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EcoScrub
OxyFuel / Post Combustion Capture Hybrid
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Ecoscrub
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Flames

IFRF Burner - RR 66%, 38% Inlet O2 IFRF Burner – RR 77%; 28% Inlet O2 IFRF Burner – ECO Scrub Case 3B
Air as Primary gas!
Reduced heat capacity of N2 vs CO2
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Some Thoughts
Development of a low cost option for carbon capture on existing modern

coal-fired power plant using a novel combination of techniques employed for
CO2 capture, such as O2 enrichment and post-combustion solvent
scrubbing, together with measures to increase efficiency, reduce steam
consumption and generate power requirements.
Definitely an interesting idea and not crazy but lots of questions to answer
Demonstrate the ideas
Commercial – Fuel flexibility; Key pluses over pure OxyF/Amine
Air ingress

Further work
Further cost analysis but needs to be site specific
Future developments in Amines targeted at 28% CO2 concentration
Lower cost oxygen production
Membrane development.
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Conclusion
(Biased and do not represent RWE’s views!!)

> Oxyfuel is a better option than post combustion capture

– Suitable for retrofit

– Flexibility on fuel

– It is more flexible than Post Combustion Capture

• Where the oxygen is injected

• Recycle rate

• OFA port options.
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Thank you for your attention.
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Latest results – Wet / Dry comparison
 

Radiative Heat Flux
Russian coal B, 18%H2O, 3% O2 
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Latest results – Wet (8%) / Wet (18%) comparison

 
Radiative Heat Flux

Russian coal B, 3% O2 
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Wet (18%) and Dry Recycle Normalised Peak 
Radiative and Convective Heat Flux

Normalised Peak Radiative and Convective Heat Flux
Russian coal, 3%O2, 

Dry v's Wet combustion
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